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Abstract. This paper presents an improved cellular automata model, which is based on three phase traffic
theory and can reproduce the first order phase transition from free flow to synchronized flow. The fun-
damental diagram, the spacetime plots, and the 1-min average flux density diagram are presented. The
autocorrelation and cross correlation functions are studied to identity the synchronized flow state. It is
shown that the results of the model are well consistent with the empirical findings.

PACS. 45.70.Vn Granular models of complex systems; traffic flow – 05.40.-a Fluctuation phenomena,
random processes, noise, and Brownian motion – 02.60.Cb Numerical simulation; solution of equations

1 Introduction

The systematic investigation of traffic flow has a quite long
history (see, e.g., [1–10]). Recently, a more detailed anal-
ysis of empirical data has been given by Kerner and his
colleague [8–10]. They pointed out that traffic flow can be
either free or congested and the congested flow can be fur-
ther distinguished into synchronized flow and wide moving
jams. The complex spatio-temporal behavior of real traffic
is due to the transitions between the three traffic phases.
It is also pointed out that the phase transitions among the
three phases are all first order.

Different explanations of these empirical findings and
different models have been proposed by various groups in
the last years [1–4]. Most model may be classified into the
“fundamental diagram approach” since the steady state
solutions of these models belong to a curve in the flow-
density plane [11–13]. This curve which goes through the
origin and has at least one maximum is called the funda-
mental diagram for traffic flow.

The fundamental diagram approach is successful in ex-
plaining several aspects of real traffic such as the form-
ing of queue, the evacuation of jams and etc. However,
as pointed out by Kener [4,14–17], the phase transitions
and most of empirical spatial-temporal pattern features
are qualitatively different from those which follow from
the mathematical traffic flow models in the fundamental
diagram approach.

Kerner introduced a cellular automata (CA) model
based on the three-phase traffic theory which postu-
lates that the steady states (homogeneous and station-
ary states, time-independent solutions in which all vehi-
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cles move with the same constant speed ) of synchronized
flow cover a two-dimensional region in the flow-density
plane, i.e., there is no fundamental diagram of traffic
flow [4,14–17]. The simulations show that the empirical
spatial-temporal pattern features of traffic flow may be
reproduced in this theory. The first-order phase transition
from free flow to synchronized flow and the nucleation ef-
fect that governs this transition are also reproduced (see
Fig. 8.3 in [4], Fig. 17b in [16]). Random time delays, prob-
ability, and the critical and threshold boundaries for this
transition have been studied [4,16,17].

Recently, some new microscopic models based on three
phase traffic theory have been developed, which can show
the congested pattern features found by Kerner. For exam-
ple, Lee et al. proposed a different CA model which also
can describe the empirical spatial-temporal pattern fea-
tures of traffic [18]. Besides, Jiang and Wu [19] presented
a CA model based on the comfortable driving model of
Knospe et al. [20], which can reproduce the synchronized
flow quite satisfactorily.

In this paper, we focus on Jiang and Wu’s model. From
Figure 4 in [19], one can see that in this model, phase tran-
sition from free flow to synchronized flow is not correctly
described: it is second order in the model. Therefore, the
model needs to be improved to depict the empirical find-
ings. This has been fulfilled by modifying the brake light
rule. The modified model is able to reproduce the first or-
der phase transition from free flow to synchronized flow.

The paper is organized as follows. In Section 2, the
Jiang and Wu’s model is briefly reviewed and the improved
model are presented based on it. In Section 3, the simula-
tion results are analyzed and compared with the empirical
data. The conclusions are given in Section 4.
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2 Improved model

For the sake of the completeness, we briefly recall Jiang
and Wu’s model. The parallel update rules of the model
are as follows:

1. Determination of the randomization parameter pn(t +
1):
pn(t + 1) = p(vn(t), bn+1(t), th,n, ts,n).

2. Acceleration:
if ((bn+1(t) = 0 or th,n ≥ ts,n) and(vn(t) > 0)) then:
vn(t + 1) = min(vn(t) + 2, vmax)
else if (vn(t) = 0) then :
vn(t + 1) = min(vn(t) + 1, vmax)
else :
vn(t + 1) = vn(t).

3. Braking rule:
vn(t + 1) = min(deff

n , vn(t + 1)).
4. Randomization and braking:

if (rand() < pn(t + 1)) then: vn(t + 1) = max(vn(t +
1) − 1, 0).

5. The determination of bn(t + 1):
if (vn(t + 1) < vn(t)) then: bn(t + 1) = 1
if (vn(t + 1) > vn(t)) then: bn(t + 1) = 0
if (vn(t + 1) = vn(t)) then: bn(t + 1) = bn(t).

6. The determination of tst,n:
if vn(t + 1) = 0 then: tst,n = tst,n + 1
if vn(t + 1) > 0 then: tst,n = 0.

7. Car motion:
xn(t + 1) = xn(t) + vn(t + 1).

Here xn and vn are the position and velocity of vehi-
cle n (here vehicle n + 1 precedes vehicle n), dn is the
gap of the vehicle n, bn is the status of the brake light
(on(off)→ bn = 1(0)). The two times th,n = dn/vn(t) and
ts,n = min(vn(t), h), where h determines the range of in-
teraction with the brake light, are introduced to compare
the time th,n needed to reach the position of the lead-
ing vehicle with a velocity dependent interaction horizon
ts,n. deff

n = dn + max(vanti − gapsafety , 0) is the effective
distance, where vanti = min(dn+1, vn+1) is the expected
velocity of the preceding vehicle in the next time step
and gapsafety controls the effectiveness of the anticipation.
rand() is a random number between 0 and 1, tst,n denotes
the time that the car n stops. The randomization param-
eter p is defined:

p(vn(t), bn+1(t), th,n, ts,n) =





pb : if bn+1 = 1 and th,n < ts,n

p0 : if vn = 0 and tst,n ≥ tc
pd : in all other cases.

Here tc is a parameter.
In what follows, the model is improved to reproduce

the first order phase transition from free flow to synchro-
nized flow. To this end, a new variable tf,n is introduced.
It denotes the time that car n is in the state vn ≥ vc. We
suppose that if vn(t+1) ≥ vc and tf,n ≥ tc1, then bn(t+1)
remains to be zero despite of the value of vn(t). For the

Fig. 1. The fundamental diagram of the improved model. This
diagram is associated with 2Z-characteristics for the first order
transition from free flow to synchronized flow and the first
order transition from synchronized flow to jam in speed density
plane (see, e.g., Fig. 17.10 in [4]), line DE is associated with
the line J discussed in detailed in the book [4].

determination of tf,n, it is simply that

if vn(t + 1) ≥ vc then: tf,n = tf,n + 1

if vn(t + 1) < vc then: tf,n = 0.

Here vc and tc1 are parameters.
In the next section, the simulations are carried out. In

the simulations, the parameter values are tc = 10, tc1 =
30, vc = 18, vmax = 20, pd = 0.1, pb = 0.94, p0 = 0.5,
h = 6, gapsafety = 7. Each cell corresponds to 1.5 m and a
vehicle has a length of five cells. One time step corresponds
to 1 s. The periodic boundary condition is used and the
system size is L = 10 000.

3 Simulation results

In this section, the simulation results are presented. In Fig-
ure 1, we show the fundamental diagram of the improved
model. The flux is calculated from J = ρ〈v〉, where 〈v〉 is
average velocity of the vehicles. When the density ρ < ρth,
the system is in free flow. When ρ > ρth, one can see that
three branches are distinguished. The branch AB starts
from the initial condition I1: the cars are distributed ho-
mogeneously and vn > vc and tf,n > tc1 for all cars. For
the case, the free flow is maintained (see Fig. 2a). The
branch AC starts from the initial condition I2: the cars are
distributed homogeneously and vn < vc and tf,n = 0 for
all cars. For the case, the simulations show that tf,n > tc1
can never be reached for any car. Thus the improved model
reduces to the original model. The homogeneous distribu-
tion of cars leads to light synchronized flow or heavy syn-
chronized flow (see Figs. 5c and d in Ref. [19]). The branch
DE starts from the megajam. For the case, the system is
the coexistence of jam, free flow and light synchronized
flow (see Figs. 5e and f in Ref. [19]).

For the density ρ > ρ
(free)
max , even if starting from the

initial condition I1, the free flow cannnot be maintained. It



R. Jiang and Q-S. Wu: First order phase transition from free flow to synchronized flow in a cellular automata model 583

Fig. 2. (a) The free flow phase starting from initial condition
I1, ρ = 0.15; (b) the free flow spontaneously evolves into the
synchronized flow, ρ = 0.16; (c) the synchronized flow sponta-
neously evolves into the jam, ρ = 0.37.

will spontaneously evolve into the synchronized flow after
certain time (see Fig. 2b) [14]. Similarly, for the density
ρ > ρ(cr,SJ), even if starting from the initial condition I2,
the synchronized flow cannot be maintained. It will spon-
taneously evolve into the coexistence of jam, free flow and
light synchronized flow after certain time (see Fig. 2c) [14].

In order to identify more clearly the synchronized traf-
fic, the correlation function is investigated. First we con-
sider the autocorrelation

ax(τ) =
〈x(t)x(t + τ)〉 − 〈x(t)〉2

〈x2(t)〉 − 〈x(t)〉2

of the aggregated quantities x(t). In Figure 3a, the auto-
correlations of one-minute aggregates of the density, flow,
and average speed of a synchronized state are shown. One
can see that there is no correlations on time scales larger
than 1 min. Figure 3b shows that the cross correlation

cx,y(τ) =
〈x(t)y(t + τ)〉 − 〈x(t)〉〈y(t)〉

√〈x2(t)〉 − 〈x(t)〉2√〈y2(t)〉 − 〈y(t)〉2

Fig. 3. (a) Autocorrelation function and (b) cross correlation
between density and flow, of the synchronized flow. (c) The
1-min averaged flux density diagram corresponding to the syn-
chronized flow in (a) and (b).

between density and flow vanishes. Both clarify the exis-
tence of the synchronized flow state.

Next we study the phase transition between the free
flow and the synchronized flow. We slowly add cars to a
homogeneous free flow, the traffic system evolves along
the branch AB (Fig. 4). However, when the system den-
sity exceeds ρ

(free)
max , the free flow can only exist for a finite

time, then the synchronized flow appears spontaneously.
The flow rate drops to a lower value. Then we slowly re-
move the cars from the system. The system evolves along
the branch CA instead of returning to the branch AB.
This obviously is a first order phase transition.

In Figure 5, we show the 1-min average flux density
diagram. One can see that it is in consistent with the
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Fig. 4. The phase transition from free flow to synchronized
flow when adding cars slowly to a free flow system, and the
transition from synchronized flow to free flow when removing
cars from synchronized traffic. This curve is associated with
the Z-characteristic for the first order transition from free flow
to synchronized flow in speed density plane (see e.g., Fig. 17.3
in [4]).

Fig. 5. The 1-min averaged flux density diagram.

empirical observations (cf. Fig. 1 in Ref. [8]1). The first
order phase transition from free flow to synchronized flow
as well as the wide scatter of the synchronized flow data
is reproduced [17].

We investigate the effect of tc1 on the fundamental
diagram. The simulations show that with the increase of
tc1, ρ

(free)
max decreases while ρ(cr,SJ) remains unaltered. For

a large enough tc1, the improved model reduces to the
original one of Jiang and Wu’s. However, with the decrease
of tc1, ρ

(free)
max increases and ρ(cr,SJ) decreases. For a small

tc1, the synchronized flow cannot be reproduced and the
improved model reduces to a model similar to the velocity
dependent randomization (VDR) model.

1 We believe that the much lower flow rate in reference [8] is
caused by mixture with slow vehicles, see also reference [21].

4 Conclusions

This paper presented an improved CA model which can
reproduce the first order phase transition from the free
flow to synchronized flow. The fundamental diagram are
analyzed: it is shown that three branches can be classi-
fied. The spacetime plots of different phases as well as
the transition between different phases are shown. The
autocorrelation and cross correlation functions of the syn-
chronized flow state are investigated. The 1-min average
flux density diagram is presented and it is satisfactorily
consistent with the empirical findings. The effect of the
parameter tc1 is investigated, and it is found that the im-
proved model may reduce to either the original model of
Jiang and Wu’s or the VDR model depending on the value
of tc1.
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